# For a safer life start

# Abstract

Neonatal congenital screening for hypothyroidism (CH) and congenital adrenal hyperplasia (CAH) are two endocrine disorders commonly integrated in newborn screening programs worldwide. The screening is generally ensured by quantifying, respectively, TSH and 17-OHP in newborns' dried blood spots. In Liège area (Belgium), newborn screening is centralized in the Biochemical Genetics Laboratory (CHU of Liège), which uses the NEONATAL TSH Screening ELISA and NEONATAL 17-OHP Screening ELISA devices, both CE-marked and manufactured by ZenTech s.a.

The aim of the presentation is to show a feedback from a 3-year-long use of these devices, on more than 15,000 samples for each parameter. These data were used to assess the clinical performance of the devices (diagnostic sensitivity, diagnostic specificity, etc.) according to the UE 2017/746 regulation (IVD-R, Annex I).

# Introduction

Congenital hypothyroidism is one of the most common preventable causes of mental retardation and is also the most common congenital disorder of childhood (Saran, 2019). Thus, newborn screening for CH is one of the major achievements of preventive medicine: it has largely eliminated the intellectual disability associated with this disorder through early diagnosis and treatment (Büyükgebiz, 2013; Ford and LaFranchi, 2014).

Congenital adrenal hyperplasia is a family of common endocrine disorders characterized by impaired adrenal cortisol biosynthesis with associated androgen excess. The most common (90–95%) is caused by 21hydroxylase deficiency (Balsamo et al., 2020). Newborn screening for CAH has resulted in decreasing the morbidity and mortality associated with the most severe forms of these disorders (Held, 2020).

In Liège area, the Biochemical Genetics Laboratory (CHU of Liège) screens these two endocrine disorders with ZenTech devices.

# Methodology

# Sampling

The trueness assessment was performed with spiked samples provided by the Centers for Disease Control and Prevention (CDC). The clinical performance is based on the results from newborn screening program performed at the Biochemical Human Genetics Laboratory (Liège, Belgium) from 1<sup>st</sup> January 2018 to 31<sup>st</sup> December 2020, representing a total of 46,592 samples. The neonates' blood sampling was generally done before the 7th postpartum day.

# **Principle of the assays**

The NEONATAL TSH and 17-OHP Screening ELISA devices are intended to be used for the CH and CAH newborn screening, respectively. Both assays are based on colorimetric ELISA technique: the first is a sandwich ELISA, and the second a competitive one. Their principles are illustrated below. **NEONATAL 17-OHP Screening ELISA NEONATAL TSH Screening ELISA** 



# Results

# **NEONATAL TSH Screening ELISA Analytical performance – Trueness**

| <b>,</b>           |  |
|--------------------|--|
| <b>CDC</b> samples |  |
| (NSQAP)            |  |
| 20201001001        |  |
| 20201001002        |  |
| 20201001003        |  |
| 20201001004        |  |
| 20201001005        |  |
| 20204001001        |  |
| 20204001002        |  |
| 20204001003        |  |
| 20204001004        |  |
| 20204001005        |  |

# **NEONATAL 17-OHP Screening ELISA Analytical performance – Trueness**

| CDC samples |   |  |  |
|-------------|---|--|--|
| (NSQAP)     |   |  |  |
| 20204001001 |   |  |  |
| 20204001002 |   |  |  |
| 20204001003 |   |  |  |
| 20204001004 |   |  |  |
| 20204001005 | / |  |  |
| 20213001001 |   |  |  |
| 20213001002 |   |  |  |
| 20213001003 |   |  |  |
| 20213001004 |   |  |  |
| 20213001005 |   |  |  |

ZenTech s.a. - Liège Science Park – Avenue du Pré-Aily, 10 – B-4031 Angleur – Belgium +32(0)4 361 42 32 - info@zentech.be - www.zentech.be

# **Newborn Screening for Endocrine Disorders: Belgian Experience with ZenTech s.a. devices**

Madeleine BOULANGER<sup>1</sup>, François BOEMER<sup>2</sup>, Roland COENEN<sup>2</sup>, Géraldine LUIS<sup>2</sup>, Delphine DEBOIS<sup>1</sup> <sup>1</sup> Validation Department, ZenTech s.a., Angleur, Belgium; <sup>2</sup> Biochemical Genetics Laboratory, CHU de Liège, Liège, Belgium

| Assessment |          |  |  |  |  |
|------------|----------|--|--|--|--|
| ZenTech    | Expected |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Positive   | Positive |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Positive   | Positive |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |

| Clinical performance<br>Diagnostic sensibility and specificity, predictive values Likelihood ratios |                       |                         |             |           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------|-----------|--|--|--|--|
|                                                                                                     | Disease present       | Disease absent          |             | LR += 200 |  |  |  |  |
| Positive test                                                                                       | 17                    | 232                     | PPV = 0.068 | LR = 0    |  |  |  |  |
| Negative test                                                                                       | 0                     | 46,343                  | NPV = 1.00  |           |  |  |  |  |
|                                                                                                     | Sensitivity = 100.00% | Specificity = 99.50%    |             |           |  |  |  |  |
| Exported valu                                                                                       | in affected and norma | l nowborne' nonulatione |             |           |  |  |  |  |

Expected values in affected and normal

|          | [TSH] (µUI/mL <sub>blood</sub> ) |      |        |      |       |                        |
|----------|----------------------------------|------|--------|------|-------|------------------------|
|          | Ν                                | Mean | Median | Min  | Max   | 99 <sup>th</sup> perc. |
| Affected | 17                               | 81.5 | 25.4   | 10.7 | 308.0 | 303.0                  |
| Normal   | 46,575                           | 1.6  | 1.3    | 0.4  | 51.9  | 7.6                    |

| Assessment |          |  |  |  |  |
|------------|----------|--|--|--|--|
| ZenTech    | Expected |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Positive   | Positive |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Positive   | Positive |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |
| Negative   | Negative |  |  |  |  |

**Clinical performance** 

Diagnostic sensibility and specificity, predictive values

| •             |                          |                         |         |
|---------------|--------------------------|-------------------------|---------|
|               | Disease present          | Disease absent          |         |
| Positive test | 7                        | 245                     | PPV = 0 |
| Negative test | 0                        | 26,662                  | NPV =   |
|               | Sensitivity $= 100.00\%$ | Specificity $= 99.09\%$ |         |

Expected values in affected and normal newborns' populations

|          | [TSH] (µUI/mL <sub>blood</sub> ) |       |        |       |       |                        |  |
|----------|----------------------------------|-------|--------|-------|-------|------------------------|--|
|          | Ν                                | Mean  | Median | Min   | Max   | 99 <sup>th</sup> perc. |  |
| Affected | 7                                | 389.5 | 412.7  | 237.0 | 551.5 | 549.4                  |  |
| Normal   | 26,907                           | 19.0  | 14.2   | 0.0   | 907.9 | 98.0                   |  |



In the affected population, the lowest TSH levels were found mainly in newborns with transient CH or Down syndrome.

Likelihood ratios LR += 109.9LR = 0

As expected, high 17-OHP levels were observed in the normal population, confirming the need to interpret the results in relation to GA, BW and stress factors (Anandi and Shalia, 2017).

Abbreviations: PPV: Positive Predictive Value; NPV: Negative Predictive Value; LR: Likelihood Ratio; GA: Gestational Weight; BW: Birth Weight

).028

1.00



# Measurement system

The measurement system is an ELISA automated system named Immunomat type 6381 (Virion Serion).



# **Statistical approach**

The statistical method used is based on analytical and clinical performance defined in Article 9 of Annex 1 of the EU 2017/746 Regulation (IVD-R).

# Conclusions

The trueness evaluation of the NEONATAL TSH and 17-OHP Screening ELISA devices were based on DBS provided by the CDC. All the samples were correctly assigned, representing a 100%-match between the obtained and expected assessment.

Based on the Belgium 3-years experience, both devices presents good clinical performance. The NEONATAL TSH Screening ELISA diagnostic sensitivity and specificity are above the values found in the scientific literature (96.5% and 99%, respectively) (Saleh *et al.*, 2016; Knowles *et al.*, 2018). For the NEONATAL 17-OHP Screening ELISA, the clinical performance meets also the literature reference values *i.e.*, diagnostic sensitivity of 100%, diagnostic specificity of 99.8% and a positive predictive value of 0.011 (Heather *et al.*, 2015). Moreover, both devices provide credible diagnostic accuracy since the positive likelihood ratio is above 10 and the negative one is less than 0.1 (Deeks, 2001).

# References

Anandi, V. S. and Shaila, B. (2017) J Pediatr Endocrinol Metab. 30(6), pp. 677–681. Balsamo, A. et al. (2020) Front Pediatr. 8, 593315. Büyükgebiz, A. (2013) J Clin Res Ped E, 5(Suppl 1), pp. 8–12. Deeks, J.J. (2001) *BMJ.* 323(7305), pp. 157–162. Ford, G. and LaFranchi, S.H. (2014) *Best Pract Res Cl En*, 28(2), pp. 175–187. Heather, N. L. et al. (2015) ) J Clin Endocrinol Metab. 100(3), pp. 1002–1008. Held, P. K., et al. (2020) Int J Neonat Screen. 6(3), 67. Knowles, R. L. *et al.* (2018) *J Clin Endocrinol Metab*. 103(10), pp. 3720–3728. Saleh, D. S. *et al.* (2016) *BMC Pediatr.* 16(1), pp. 1–5. Saran, S. (2019) 'Congenital Hypothyroidism' in Thyroid Disorders (ed. Gopalratnam Raman, P.).

IMMUNOASSAY